

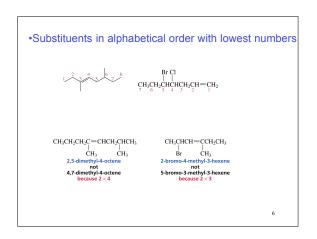
Molecular Formulas of Alkenes

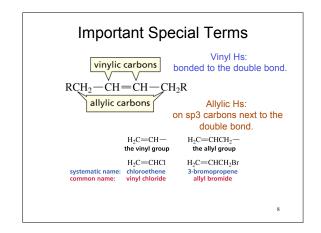
Saturated vs. Unsaturated: Missing Hydrogens

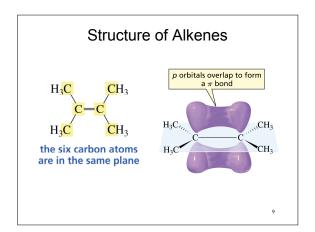
CH₃CH₂CH₂CH₃ CH₃CH=CHCH₃ a saturated hydrocarbon an unsaturated hydrocarbon

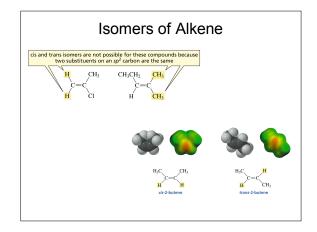
> Alkanes are completely "saturated" i.e. only single bonds

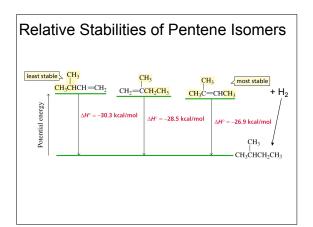
Each double bond has 1 degree of unsaturation. Each ring has 1 degree of unsaturation. Each triple bond is 2 degrees of unsaturation.

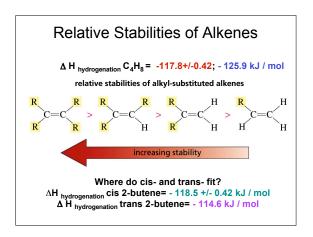

Compare a molecular formula to an alkane's: every TWO Hydrogens less = I degree of unsaturation

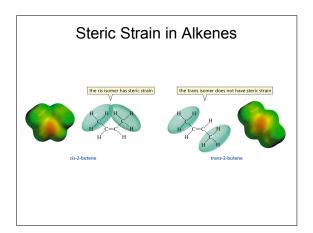

Molecular Formulas of Alkenes Saturated vs. Unsaturated: Missing Hydrogens Noncyclic alkene: Cyclic alkene: C_nH_{2n} $\mathbf{C_{n}H_{2n-2}}$ 1 degree of unsaturation (Same as an alkyne; 2 degrees of unsaturation) CH₃CH₂CH₂CH=CH₂ CH2CH2CH2CH2CH2

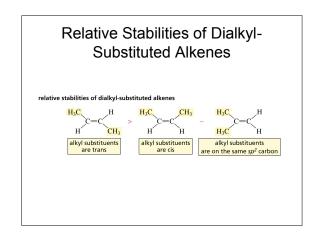

•Follows alkane rules; treats double bond as a function: Think of alcohols $\overset{\dagger}{\text{CH}}_{3}\overset{\dagger}{\text{CH}}_{2}\overset{\dagger}{\text{CH}}=\overset{1}{\text{CH}}_{2}$ CH₃CH=CHCH₃ CH₃CH=CHCH₂CH₂CH₃ 2-butene 2-hexene the longest continuous chain has eight carbons but the longest continuous chain containing the functional group has six carbons, so the parent name of the compound is hexene CH3CH2CH2CH2CH2CH2CH3 1 CH₂

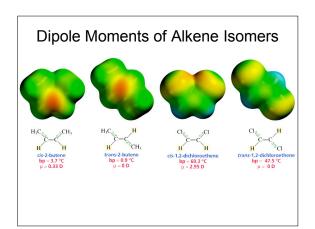

2-propyl-1-hexene

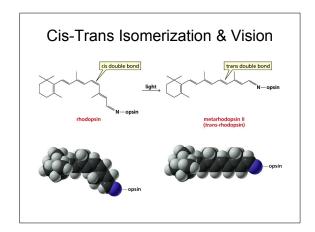

Systematic Nomenclature of Alkenes

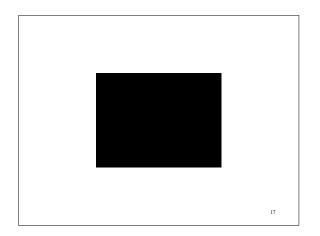


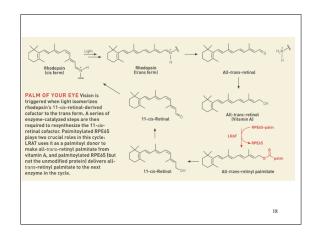


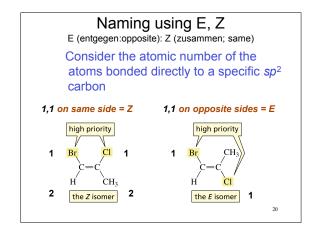












If the atoms are the same, eg. the carbon atoms: then consider the other atoms that are attached to them.

CH3

CICH2

CHCH3

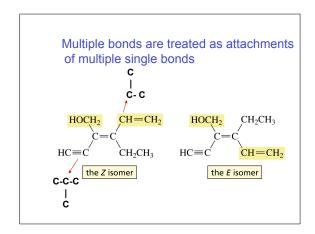
CHCH2

CHCH2

CHCH2

CHCH2

CHCH2


CH2OH

CICH2

CH2OH

The Z isomer

O vs C

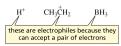
Rank the priorities by mass number in isotopes

CH3
CHCHCH3
CHCHCH2
CH=CH2
CH=CH2
CHCH3
CH=CH3
CHCH3
CH3
CHCH3
CH3
The Z isomer

An alkene is an electron rich molecule, a nucleophile.

"nucleophile"- likes nuclei (likes protons: H+)

Nucleophiles: electron-rich atoms or molecules that react with electrophiles.


"electrophile"- likes electrons (likes minus: e-and anions) Examples of nucleophiles

HÖ: - : Ci: - CH3NH2 H2O:

these are nucleophiles because they have a pair of electrons to share

Nucleophiles are attracted to electron-deficient atoms or molecules (electrophiles) Examples of Electrophiles

.

25

Electrophilic Addition of HBr to Alkene

A two step reaction.

Mechanistic path of a reaction:
how reactants form products.

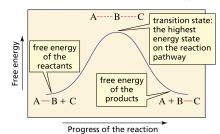
How can a mechanism be illustrated? i.e. bond making & bond breaking

Using Curved Arrows in Reaction Mechanisms

Movement of a pair of electrons:

START arrows from electrons pointing to electrophile

Use 1/2 arrow for the movement of one electron


27

Using Curved Arrows

$$CH_3CH = CHCH_3 \ + \ H = \stackrel{\delta_+}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}}{\overset{\delta_-}}}{\overset{\delta_-}{\overset{\delta_-}}}{\overset{\delta_-}}{\overset{\delta_-}}}{\overset{\delta_-}}}}}}}}}}}}}}}}}} \ CH_3$$

28

Reaction Coordinate or Energy Diagram

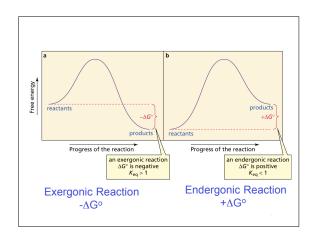
Transition states have partially formed bonds

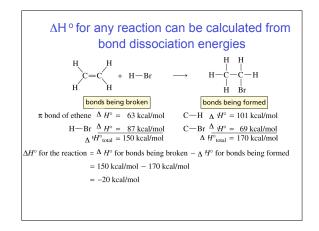
Intermediates have fully formed bonds

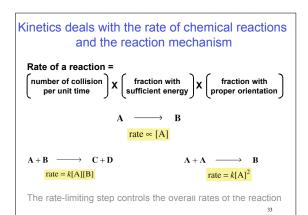
29

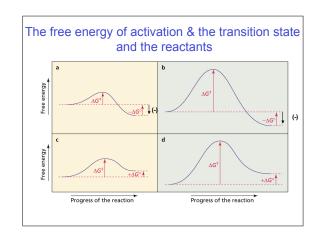
Thermodynamic Parameters

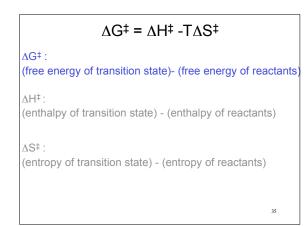
 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

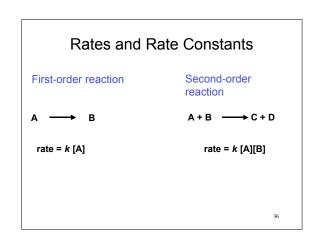

Gibbs standard free energy change (ΔG°)


Enthalphy (ΔH^{o}): the heat given off or absorbed during a reaction


Entropy (ΔS°): a measure of freedom of motion


If ΔS° is small compared to ΔH° , $\Delta G^{\circ} \wedge \Delta H^{\circ}$


30

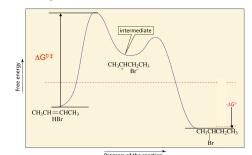


The Arrhenius Equation

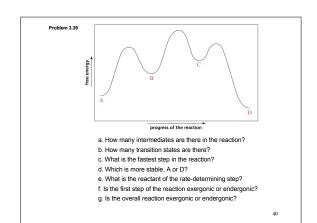
$$k = Ae^{-E_a/RT}$$
 $E_a = \Delta H^{\ddagger} + RT$

Rate Constants and the Equilibrium Constant

$$K_{eq} = k_1/k_{-1} = [B]/[A]$$

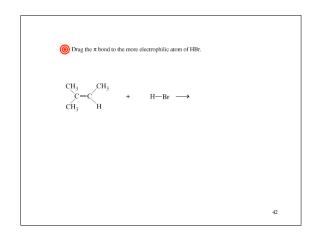

37

Transition State Versus Intermediate


Transition states have partially formed bonds

Intermediates have fully formed bonds

Electrophilic Addition of HBr to 2-Butene



The rate-limiting step controls the overall rates of the Reaction. It has the highest activation energy. **

10a
Addition of Hydrogen
Halides to Alkenes 1

Why does the proton add to one carbon
preferably over the other?
(The reaction is regioselective.)

